西门子全国数控系统一级总代理
(4)反向恢复电流IRP及反向恢复时间trr 由于二极管PN结中的空间电荷区存储电荷的影响,当给处于正向导通状态的二极管施加反压时,二极管不能立即转为截止状态,只有当存储电荷完全复合后,二极管才呈现高阻状态。这期间的电压电流波形见图2-5。这一过程称为二极管的反向恢复过程。反向恢复时间trr通常定义为从电流下降为零至反向电流衰减至反向恢复电流峰值的百分比(一般为10%或25%)的时间。反向恢复电流及恢复时间与正向导通时的正向电流IF以及电流下降率diF/dt密切相关。产品手册中通常给出在一定的正向电流以及电流下降率的条件下,二极管的反向恢复电流及恢复时间。中电流下降时间tF与延迟时间td的比值称为恢复特性的软度,或称恢复系数。恢复系数越大,在同样的外电路条件下造成的反向电压过冲URP越小。反向恢复电流小、恢复时间短的快速软恢复二极管是开关电源高频整流部分的理想器件。今后,低成本、结构简单、容易实现,并且具有软开关性能、高响应速度、低输出纹波的单级隔离高功率因数变换器是研究人员研究的终目标。
2.高效率在开关电源中,电力电子器件是完成电能转换以及主电路拓扑中为关键的元件。电力电子器件通常工作于开关状态,因此又常当N型半导体和P型半导体结合后构成PN结。由于交界处电子和空穴的浓度差别,造成了各区的多子向另一区的扩散运动,于是在界面两侧分别留下了带正、负电荷但不能任意移动的杂质离子。这些不能移动的正、负电荷称为空间电荷。空间电荷建立的内电场,其方向是阻止扩散运动的,而且能吸引对方区内的少子(对本区而言则为多子)向本区运动,即漂移运动。扩散运动和漂移运动达到平衡时,正、负空间电荷量达到稳定值,形成了一个稳定的由空间电荷构成的范围,被称为空间电荷区,通常也称为耗尽层、阻挡层或势垒区。和散热条件下,其允许流过的大工频正弦半波电流的平均值。快恢复二极管通常采用占空比为一定数值(通常为0.5)的方波电流的平均值标注二极管的额定电流。二极管的结温(或壳温)是限制其工作电流大值的主要因素之一,因此在实际使用时应按有效值相等的原则来选取电流定额,并同时考虑器件的散热条件。当用在频率较高的场合时,开关损耗造成的发热往往不能忽略,因此即使不考虑安全裕量,二
当PN结外加正向电压,即外加电压的正端接P区、负端接N区时,外加电场方向与内电场方向相反,内电场被削弱,使得多子的扩散运动大于少子的漂移运动,而在外电路上形成自P区至N区的电流,该电流被称为正向电流。由于电导调制效应,正向PN结在流过较大正向电流时的压降很低,表现为正向导通状态。
当PN结外加反向电压时,外加电场与内电场方向相同,使空间电荷区加宽,少子的漂移运动大于多子的扩散运动,产生自N区至P区的电流,该电流被称为反向电流。由于少子的浓度很小,因此,此时的PN结表现为高阻态,被称为反向截止状态。
浔之漫智控技术(上海)有限公司(w)
是中国西门子的合作伙伴,公司主要从事工业自动化产品的集成,销售和维修,是全国的自动化设备公司。
公司坐落于中国城市上海市,我们真诚的希望在器件的销售和工程项目承接、系统开发上能和贵司开展多方面合作。
以下是我司主要代理西门子产品,欢迎您来电来函咨询,我们将为您提供优惠的价格及快捷细致的服务!
在PN结承受反向电压时,随着反向电压的升高,空间电荷区的宽度及电场强度的峰值均随之增加,此时若电场强度超过一定限度就会造成击穿。PN结的电击穿有两种形式:雪崩击穿和齐纳击穿。反向击穿发生时,只要外电路中采取了措施,将反向电流限制在一定范围内,保证PN结的耗散功率不超过允许值,PN结仍可恢复正常。如果超过了允许的耗散功率,就会导致PN结温度过高而烧毁,这种现象称为热击穿。称为开关器件。
随着半导体材料及技术的发展,新型电力电子器件不断推出,传统电力电子器件的性能也不断提高,这成为包括开关电源在内的各种电力电子装置的体积、效率等性能指标不断提高的重要因素。了解和掌握各种电力电子器件的特性和使用方法是正确设计开关电源的基础。
在开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。SCR在开关电源的输入整流电路及其软启动中有少量应用,GTR由于驱动较为困难、开关频率较低,也逐渐被IGBT和MOSFET所取代。因此这里将主要介绍二极管、IGBT和MOSFET的工作原理和主要参数。
MOSFET和IGBT是全控型器件,输入具有一定的容性,要使其工作于高速的开关状态,必须要有具有一定驱动能力的驱动电路,本章对这两种器件的驱动电路进行介绍
应用各种软开关技术,包括无源无损软开关技术、有源软开关技术及目前同步整流用MOSFET代替整流二极管都能大大地提高模块在低输出电压时的效率,而效率的提高使得敞开式无散热器的电源模块有了实现的可能。这类模块是当今世界模块潮流,必将得到广泛应用。随着器件性能的改变,电源效率将越来越高,目前,有的公司生产的电源模块的效率已经超过96%。
3.小型化、薄型化、轻量化、高频化
开关电源的体积、重量主要是由储能元件(磁性元件和电容)决定的,因此开关电源的小型化实质上就是尽可能减小其存储元件的体积。在一定范围内,开关频率的提高,不仅能有效地减小电容、电感及变压器的尺寸,而且还能够抑制干扰,改善系统的动态性能。因此,高频化是开关电源的主要发展方向。
4.高可靠性
开关电源的寿命主要由电解电容、光耦合器及风扇的器件决定,所以,要从设计方面着眼,尽可能使用较少器件,提高集成度。另外,发热也是影响开关电源寿命的重要原因。随着开关电源效率的不断提高,开关电源的发热量越来越小,这大大提高了开关电源的使用寿命,现有的开关电源的平均故障间隔时间(Mean Time Between Failures,MTBF)可以达到几百万小时,而且随着新材料、新工艺不断被采纳,开关电源的可靠性会进一步提高。