上海西门子伺服电机中国一级总代理
(2)内部标志位存储器(M)
内部标志位存储器在实际工程中常称作辅助继电器,其作用相当于继电器控制电路中的中间继电器,它用于存放中间操作状态或存储其他相关数据
输出映像寄存器可采用位、字节、字和双字来存取。S7-200 SMART PLC操作
输入映像寄存器可采用位、字节、字和双字来存取。
S7-200 SMART PLC CPU模块有内部电源,为CPU模块、扩展模块和信号板正常工作供电。
当有扩展模块时,CPU模块通过总线为扩展模块提供DC 5V电源,因此,要求所有的扩展模块消耗的DC 5V不得超出CPU模块5V DC电流差额=105mA>0mA,24V DC电流差额=-12mA<0mA,5V CPU模块提供的电量够用,24V CPU模块提供的电量不足,因此这种情况下24V供电需外接直流电源,实际工程中干脆由外接24V直流电源供电,就不用CPU模块上的传感器电源(24V DC)了,以免出现扩展模块不能正常工作的情况。本身的供电能力。每个PLC的输入端子与相应的输入继电器线圈相连,当有外部信号输入时,对应的输入继电器线圈得电即输入映像寄存器相应位写入“1”,程序中对应的常开触点闭合,常闭触点断开;当无外部输入信号时,对应的输入继电器线圈失电即输入映像寄存器相应位写入“0”,程序中对应的常开触点和常闭触点保持原来状态不变。 程序区用来存储用户程序,存储器为EEPROM;系统区用来存储PLC配置结构的参数如PLC主机和扩展模块I/O配置和编制、PLC站地址等,存储器为EEPROM。
数据区是用户程序执行过程中的内部工作区域。该区域用来存储工作数据和作为寄存器使用,存储器为EEPROM和RAM。数据区是S7-200 SMART PLC存储器特定区域
每个CPU模块都有1个DC 24V电源(L+、M),它可以为本机和扩展模块的输入点和输出回路继电器线圈提供DC 24V电源,因此,要求所有输入点和输出回路继电器线圈耗电不得超出CPU模块本身DC 24V电源的供电能力。 5V DC电流差额=105mA>0mA,24V DC电流差额=-12mA<0mA,5V CPU模块提供的电量够用,24V CPU模块提供的电量不足,因此这种情况下24V供电需外接直流电源,实际工程中干脆由外接24V直流电源供电,就不用CPU模块上的传感器电源(24V DC)了,以免出现扩展模块不能正常工作的情况。
浔之漫智控技术(上海)有限公司(xzm-wqy-sqw)
是中国西门子的合作伙伴,公司主要从事工业自动化产品的集成,销售和维修,是全国的自动化设备公司。
公司坐落于中国城市上海市,我们真诚的希望在器件的销售和工程项目承接、系统开发上能和贵司开展多方面合作。
以下是我司主要代理西门子产品,欢迎您来电来函咨询,我们将为您提供优惠的价格及快捷细致的服务!
基于以上两点考虑,在设计PLC控制系统时,有必要对S7-200 SMART PLC电源需求进行计算。计算的理论依据是:CPU供电能力表格和扩展模块电流消耗表格
1.2.2 S7-200 SMART PLC外部接线图
外部接线设计也是PLC控制系统设计的重要组成部分之一。由于CPU模块、输出类型和外部电源供电方式的不同,PLC外部接线也不尽相同。鉴于PLC的外部接线与输入输出点数等诸多因素有关,本书给出了S7-200 SMART PLC标准型和经济型两大类端子排布情况
(6)相关设备
相关设备是为了充分和方便地利用系统硬件和软件资源而开发和使用的一些设备,主要有编程设备、人机操作界面等。 输入端子 是外部输入信号与PLC连接的接线端子,在顶部端盖下面。此外,顶部端盖下面还有输入公共端子和PLC工作电源接线端子。
(2)输出端子 输出端子是外部负载与PLC连接的接线端子,在底部端盖下面。此外,底部端盖下面还有输出公共端子和24V直流电源端子,24V直流电源为传感器和光电开关等提供能量。
(3)输入状态指示灯(LED) 输入状态指示灯用于显示是否有输入控制信号接入PLC。当指示
①编程设备主要用来进行用户程序的编制、存储和管理等,并将用户程序送入PLC中,在调试过程中,进行监控和故障检测。S7-200 SMART PLC的编程软件为STEP 7-Micro/WIN SMART。
②人机操作界面主要指专用操作员界面。常见的如触摸面板、文本显示器等,用户可以通过该设备轻松地完成各种调整和控制任务。
热电阻或热电偶扩展模块是模拟量模块的特殊形式,可直接连接热电偶和热电阻测量温度。热电阻或热电偶扩展模块可以支持多种热电阻和热电偶。热电阻扩展模块型号为EM AR02,温度测量分辨率为0.1℃/0.1℉,电阻测量精度为15位+符号位;热电偶扩展模块型号为EM AT04,温度测量分辨率块不能单独使用,需要通过自带的连接器插在CPU模块上。数字量扩展模块通常有3类,分别为数字量输入模块、数字量输出模块和数字量输入/输出混合模块。数字量输入模块有1个,型号为EM DI08,8点输入。数字量输出模块有2个,型号有EM DR08和EM DT08,EM DR08模块为8点继电器输出型,每点额定电流2A;EM DT08模块为8点晶体管输出型,每点额定电流0.75A。数字量输入/输出模块有4个,型号有EM DR16、EM DT16、EM DR32和EM DT32,EM DR16/DT16模块为8点输入/8点输出,继电器/晶体管输出型,每点额定电流2A/0.75A;EM DR32/DT32模块为16点输入/16点输出,继电器/晶体管输出型,每点额定电流2A/0.75A。
(3)信号板
S7-200 SMART PLC有3种信号板,分别为模拟量输出信号板、数字量输入/输出信号板和RS485/RS232信号板。
模拟量输出信号板型号为SB AQ01,1点模拟量输出,输出量程为-10~10V或0~20mA,对应数字量值为-27648~27648或0~27648。 可编程序控制器也称可编程控制器。它是以微处理器为基础,综合计算机技术、自动控制技术和通信技术发展起来的一种通用的工业自动控制装置。它具有体积小、功能强、灵活通用与维护方便等一系列优点。特别是它的高可靠性和较强的适应恶劣环境的能力受到用户的青睐。因而,在冶金、化工、交通、电力等领域获得了广泛应用,成为现代工业控制的三大支柱之一。
1.1 可编程序控制器系统的产生与定义
从20世纪20年代起,人们开始用导线将各种继电器、定时器、接触器及其触点按一定的逻辑关系连接起来组成控制系统,以控制各种生产机械,这就是大家所熟悉的、传统的继电接触器控制系统。该系统结构简单、容易掌握、价格便宜,能在一定范围内(特别是在工作模式固定、工作方式简单的场合)满足自动控制的需要,因而使用面甚广,这使它在一定时期内成为工业控制领域中占主导地位的设备,但是随着生产的发展,控制要求越来越复杂,继电器的类型和数量不得不大量增加,电器之间的连接也变得非常复杂。首先,由于控制柜的体积越来越庞大,大大增加了生产控制柜的难度;其次,在继电接触器控制系统中,即使一个继电器或一条连线出现故障,也会造成整个系统运行的不正常,并且由于系统的复杂,给查找和排除故障带来困难,维修非常不便;另外,当生产工艺或对象改变时,原来的接线和控制柜就要改接或更换,可见继电接触器控制系统的通用性和灵活性都远远不够。为了满足现代生产的需求,人们自然对控制系统提出了更可靠、更经济、更通用、更灵活、易维修等要求。
从20世纪60年代开始,人们相继开发了各式各样的控制装置来满足上述要求,如半导体逻辑元件控制装置。半导体逻辑元件是一种由半导体电子器件(各种晶体管、电阻、电容和硅可控整流元件等)组成的自动化元件,它种类很多,如各种逻辑门(与、或、非)、触发器、延时元件、振荡器、开关放大器、电平检测器、接近开关、交流可控硅开关等。用这些元件可按某种控制需要构成相应的无触点逻辑控制系统及控制装置;也可用逻辑元件组成通用的顺序控制装置。常用的一种顺序控制装置利用二极管矩阵来实现输入/输出逻辑关系,只要改变矩阵板上二极管插头的位置就可以改变动作的顺序,即可大大增加控制系统的灵活性。随后由于小型计算机的出现和大规模的生产,以及多机技术的发展,人们也曾试图用小型计算机来实现工业控制的要求,但由于价格昂贵、输入/输出电路的不匹配及编程技术复杂等原因(因为当时计算机的接口技术、编程技术还远远没有达到目前的水平)并未得到推广应用。
到20世纪60年代末期,美国的汽车制造业竞争趋向激烈,各生产厂家的汽车型号不断更新,其加工的生产线必须随之改变,从而要求对整个控制系统重新配置,1968年,美国通用汽车公司(GM)公开招标,并对控制系统提出如下具体的要求。
(1)编程简单,可在现场修改程序;具有数据通信功能,数据可直接送入管理计算机;
(8)易于系统扩展,在扩展系统时只要很小的改变;
(9)用户程序存储器容量至少能扩展到4KB以上。
这些要求实际上是提出了将继电器控制系统的简单易懂、使用方便、价格低的优点与计算机的功能完善、灵活性、通用性好的特点结合起来,将继电接触器控制硬连线逻辑转变为计算机软件逻辑编程的设想。1969年,美国数字设备公司(DEC)根据上述要求研制出世界上台可编程序控制器,并在GM公司汽车生产线上应用成功。当时人们把它称为可编程序逻辑控制器(PLC,Programmable Logic Controller),但只是用它取代继电接触器控制,功能于执行继电器逻辑、计时、计数等。可编程序控制器问世后,发展极为迅速。1971年,日本开始生产可编程序控制器;1973年,欧洲开始生产可编程序控制器;到现在,一些的电气制造商几乎都在生产PLC装置,如美国罗克韦尔自动化公司的AB、欧洲的西门子、日本的三菱和OMRON、美国的GE等。PLC已作为一个独立的工业设备被列入生产中,成为当代电控装置的主导。
早期的可编程序控制器主要由分立元件和中小规模集成电路组成,它采用了一些计算机技术但简化了计算机内部电路,对工业现场环境适应性较好,而且指令系统简单,一般只具有逻辑运算功能。随着微电子技术和集成电路的发展,特别是微处理器和微计算机的迅速发展,在20世纪70年代中期,美、日、德的一些厂家在可编程序控制器中开始更多地引入微机技术,微处理器及其他大规模集成电路芯片成为其核心部分,这使可编程序控制器的性价比产生了新的突破。微处理器(CPU)、只读存储器(ROM)、随机存取存储器(RAM)等已成为PLC的核心。PLC不仅用逻辑编程取代了硬连线逻辑,还增加了运算、数据传送和处理等功能,而且随着其速度、容量、功能、通信能力等的增强,它已真正成为一种电子计算机工业控制设备。
由于可编程序控制器在不断发展,因此对它下一个确切的定义是困难的。1980年,可编程序控制器问世后,由美国电气制造商协会(NEMA,National Electric Manufacturer Association)对可编程序控制器下过如下的定义:扫描速度和I/O点数。