西门子S7-300网络接头
要使电动机M停止运转,只要按下停止按钮SB1,将控制电路断开即可。这时,接触器KM线圈断电释放,KM的常开主触点将三相电源切断,电动机M停止旋转。当手松开按钮后,SB1的常闭触点在复位弹簧的作用下,虽恢复到原来的常闭状态,但接触器线圈不再依靠自锁触点通电,因为原来闭合的自锁触点早已随着接触器线圈断电而断开。
②电路的保护环节
短路保护 熔断器FU作为电路短路保护,达不到过载保护的目的。为使电动机在启动时熔体不被熔断,熔断器熔体的规格必须根据电动机启动电流大小适当选择。
过载保护 热继电器FR具有过载保护作用。使用时,将热继电器的热元件接在电动机的主电路中作为检测元件,用以检测电动机的工作电流,而将热继电器的常闭触点接在控制电路中。当电动机长期过载或严重过载时,热继电器才动作,其常闭控制触点断开,切断控制电路,接触器KM线圈断电释放,电动机停止运转,实现过载保护。
欠电压保护与失电压保护 当电源电压由于某种原因而严重欠电压或失电压时,接触器的衔铁自行释放,电动机停止旋转。当电源电压恢复正常时,接触器线圈不能自动通电,只有在操作人员再次按下启动按钮SB2后,电动机才会启动。控制电路具备了欠电压和失电压保护功能后,有如下三个方面的优点:
,防止电压严重下降时,电动机低电压运行。
第二,避免电动机同时启动而造成电压严重下降。
第三,防止电源电压恢复时,电动机突然启动运转,造成设备和人身事故。
浔之漫智控技术(上海)有限公司(w)
是中国西门子的合作伙伴,公司主要从事工业自动化产品的集成,销售和维修,是全国的自动化设备公司。
公司坐落于中国城市上海市,我们真诚的希望在器件的销售和工程项目承接、系统开发上能和贵司开展多方面合作。
以下是我司主要代理西门子产品,欢迎您来电来函咨询,我们将为您提供优惠的价格及快捷细致的服务!
(3)单向点动、自锁混合控制电路
生产实际中,有的生产机械既需要连续运转进行加工生产,又需要在调整工作时采用点动控制,这就产生了单向点动、自锁混合控制电路,所示电路实现。采用了一个复合按钮SB3。点动控制时,按下点动按钮SB3,其常闭触点先断开自锁电路,常开触点后闭合,使接触器KM线圈通电,主触点闭合,电动机启动旋转。当松开SB3时,SB3的常开触点先断开,常闭触点后合上,接触器KM线圈断电,主触点断开,电动机停止转动,实现点动控制。若需要电动机连续运转,按启动按钮SB2即可;停机时,按停止按钮SB1。
注意,点动时,若接触器KM的释放时间大于按钮恢复时间,则点动结束;SB3常闭触点复位时,接触器KM的常开触点尚未断开,使接触器自保电路继续通电,无法实现点动。
限位开关SQ1放在左端需要反向的位置,SQ2放在右端需要反向的位置,机械挡铁装在运动部件上。启动时,利用正向或反向启动按钮,如按正转按钮SB2,接触器KM1通电吸合并自锁,电动机正向旋转并带动工作台左移。当工作台移至左端并碰到SQ1时,将SQ1压下,其常闭触点断开,切断KM1接触器线圈电路;同时,使其常开触点闭合,接通反转接触器KM2线圈电路。此时,电动机由正向旋转变为反向旋转,带动工作台向右移动,直到压下SQ2限位开关,电动机由反转变为正转,工作台向左移动。因此,工作台实现自动的往复循环运动。
由上述控制情况可以看出,运动部件每经过一个自动往复循环,电动机要进行两次反接制动,会出现较大的反接制动电流和机械冲击。因此,这种电路只适用于电动机容量较小,循环周期较长,电动机转轴具有足够刚性的拖动系统中。另外,在选择接触器容量时,应比一般情况下选择的容量大一些。
行程开关SQ3和SQ4安装在工作台往返运动的极限位置上,防止行程开关SQ1和SQ2失灵,工作台继续运动不停止而造成事故,起到极限保护的作用。
机械式行程开关容易损坏,现在多用接近开关或光电开关来取代行程开关实现行程控制。
2.2.2 三相电动机降压启动控制电路
较大容量的电动机直接启动时,启动电流较大,会对电网产生巨大冲击,所以较大容量的电动机一般都采用降压方式来启动。机额定电流的2倍左右,启动电流特性好、结构简单、价格低;其缺点是启动转矩相应下降为原来三角形直接启动时的1/3,转矩特性差。因而本电路适用于电动机空载或轻载启动的场合。
②自耦变压器降压启动的控制电路 在自耦变压器降压启动的控制电路中,电动机启动电流的限制是靠自耦变压器降压来实现的。该电路的设计思想也是采用时间继电器完成电动机由启动到正常运行的自动切换。启动时串入自耦变压器,启动结束时自动将其切除。当启动电动机时,合上开关QS,按下启动按钮SB2,接触器KM1、KM3与时间继电器KT的线圈同时得电,KM1、KM3主触点闭合,电动机定子绕组经自耦变压器接至电源降压启动。当时间继电器KT延时时间到,一方面其常闭的延时触点打开,KM1、KM3线圈失电,KM1、KM3主触点断开,将自耦变压器切除;另一方面,KT的常开延时触点闭合,接触器线圈KM2得电,KM2主触点闭合,电动机投入正常运转。
几种传统的三相异步电动机的启动电路比较简单,不需要增加额外的启动设备;但其启动电流冲击一般很大,启动转矩较小,而且固定不可调。电动机停机时都是控制接触器触点断开,切断电动机电源,电动机自由停车,造成剧烈的电网波动和机械冲击。在直接启动方式下,启动电流为额定值的4~8倍,启动转矩为额定值的0.5~1.5倍;在定子串电阻降压启动方式下,启动电流为额定值的4.5倍,启动转矩为额定值的0.5~0.75倍;在星形—三角形启动方式下,启动电流为额定值的1.8~2.6倍。在星形—三角形切换时也会出现电流冲击,且启动转矩为额定值的0.5倍。对于自耦变压器降压启动,0.85倍。因而上述方法经常用于对启动特性要求不高的场合。
在一些对启动要求较高的场合,可选用软启动装置。它采用电子启动方法,其主要特点是具有软启动和软停车功能,启动电流、启动转矩可调节,还具有电动机过载保护等功能。
在软启动异步电动机的过程中,软启动器通过控制加到电动机上的电压来控制电动机的启动电流和转矩;启动转矩逐渐增加,转速也逐渐增加。一般软启动器可以通过改变参数设定得到不同的启动特性,以满足不同的负载特性要求。子绕组电路;待电动机的转速升高后,转子电流减小,使电流继电器K1先释放,K1的常闭触点复位闭合,使接触器KM2线圈通电吸合,转子电路中KM2的主触点闭合,切除电阻R1;当R1电阻被切除后,转子电流重新增大,使转速平稳。随着转速继续上升,转子电流又会减小,使电流继电器K2释放,它的常闭触点K2复位闭合,接触器KM3线圈通电吸合,转子电路中KM3的主触点闭合,把第二级电阻R2又短接切除。至此,电动机启动过程结束。